Minggu, 05 Mei 2013

OPTIK FISIS

POLARISASI CAHAYA

Sebagai gelombang transversal, cahaya dapat mengalami polarisasi. Polarisasi cahaya dapat disebabkan oleh empat cara, yaitu refleksi (pemantulan), absorbsi (penyerapan), pembiasan (refraksi) ganda dan hamburan.

1. Polarisasi karena refleksi

Pemantulan akan menghasilkan cahaya terpolarisasi jika sinar pantul dan sinar biasnya membentuk sudut 90o. Arah getar sinar pantul yang terpolarisasi akan sejajar dengan bidang pantul. Oleh karena itu sinar pantul tegak lurus sinar bias, berlaku  ip + r = 90° atau r = 90° – ip  . Dengan demikian, berlaku pula
Jadi, diperoleh persamaan
Dengan n2 adalah indeks bias medium tempat cahaya datang n1 adalah medium tempat cahaya terbiaskan, sedangkan ip adalah sudut pantul yang merupakan sudut terpolarisasi. Persamaan di atas merupakan bentuk matematis dari Hukum Brewster.
Gambar 1. Polarisasi karena refleksi
Gambar 1. Polarisasi karena refleksi

2. Polarisasi karena absorbsi selektif

Gambar 2. Skema polarisasi selektif menggunakan filter polaroid. Hanya cahaya dengan orientasi sejajar sumbu polarisasi polaroid yang diteruskan.
Gambar 2. Skema polarisasi selektif menggunakan filter polaroid. Hanya cahaya dengan orientasi sejajar sumbu polarisasi polaroid yang diteruskan.
Polarisasi jenis ini dapat terjadi dengan bantuan kristal polaroid. Bahan polaroid bersifat meneruskan cahaya dengan arah getar tertentu dan menyerap cahaya dengan arah getar yang lain. Cahaya yang diteruskan adalah cahaya yang arah getarnya sejajar dengan sumbu polarisasi polaroid.
Gambar 3. Dua buah polaroid, polaroid pertama disebut polarisator dan polaroid kedua disebut analisator dengan sumbu transmisi membentuk sudut θ
Gambar 3. Dua buah polaroid, polaroid pertama disebut polarisator dan polaroid kedua disebut analisator dengan sumbu transmisi membentuk sudut θ
Seberkas cahaya alami menuju ke polarisator. Di sini cahaya dipolarisasi secara vertikal yaitu hanya komponen medan listrik E yang sejajar sumbu transmisi. Selanjutnya cahaya terpolarisasi menuju analisator. Di analisator, semua komponen E yang tegak lurus sumbu transmisi analisator diserap, hanya komponen E yang sejajar sumbu analisator diteruskan. Sehingga kuat medan listrik yang diteruskan analisator menjadi:
E2 = E cos θ
Jika cahaya alami tidak terpolarisasi yang jatuh pada polaroid pertama (polarisator) memiliki intensitas I0, maka cahaya terpolarisasi yang melewati polarisator adalah:
I1 = ½ I0
Cahaya dengan intensitas I1 ini kemudian menuju analisator dan akan keluar dengan intensitas menjadi:
I2 = I1 cos2θ = ½ I0 cos2θ

 3. Polarisasi karena pembiasan ganda

Jika berkas kaca dilewatkan pada kaca, kelajuan cahaya yang keluar akan sama ke segala arah. Hal ini karena kaca bersifat homogen, indeks biasnya hanya memiliki satu nilai. Namun, pada bahan-bahan kristal tertentu misalnya kalsit dan kuarsa, kelajuan cahaya di dalamnya tidak seragam karena bahan-bahan itu memiliki dua nilai indeks bias (birefringence).
Cahaya yang melalui bahan dengan indeks bias ganda akan mengalami pembiasan dalam dua arah yang berbeda. Sebagian berkas akan memenuhi hukum Snellius (disebut berkas sinar biasa), sedangkan sebagian yang lain tidak memenuhi hukum Snellius (disebut berkas sinar istimewa).
Gambar 3.  Skema polarisasi akibat pembiasan ganda.
Gambar 4. Skema polarisasi akibat pembiasan ganda.

4. Polarisasi karena hamburan

Jika cahaya dilewatkan pada suatu medium, partikel-partikel medium akan menyerap dan memancarkan kembali sebagian cahaya itu. Penyerapan dan pemancaran kembali cahaya oleh partikel-partikel medium ini dikenal sebagai fenomena hamburan.
Pada peristiwa hamburan, cahaya yang panjang gelombangnya lebih pendek cenderung mengalami hamburan dengan intensitas yang besar. Hamburan ini dapat diamati pada warna biru yang ada di langit kita.
Gambar 4. Warna biru langit akibat fenomena polarisasi karena hamburan
Gambar 5. Warna biru langit akibat fenomena polarisasi karena hamburan
Sebelum sampai ke bumi, cahaya matahari telah melalui partikel-partikel udara di atmosfer sehingga mengalami hamburan oleh partikel-partikel di atmosfer itu. Oleh karena cahaya biru memiliki panjang gelombang lebih pendek daripada cahaya merah, maka cahaya itulah yang lebih banyak dihamburkan dan warna itulah yang sampai ke mata kita

ALAT OPTIK

Alat optik adalah alat-alat yang salah satu atau lebih komponennya menggunakan benda optik, seperti: cermin, lensa, serat optik atau prisma.

MATA

Mata merupakan salah satu contoh alat optik, karena dalam pemakaiannya mata membutuhkan berbagai benda-benda optik seperti lensa.

 
Kornea adalah bagian mata yang melindungi permukaan mata dari kontak dengan udara luar.
Iris adalah selaput tipis yang berfungsi untuk mengatur kebutuhan cahaya dalam pembentukan bayangan.
Lensa adalah bagian mata yang berfungsi untuk memfokuskan bayangan pada retina.
Retina berfungsi sebagai layar dalam menangkap bayangan benda, di tempat ini terdapat simpul-simpul syaraf optik.
Otot siliar berfungsi untuk mengatur daya akomodasi mata.

Pembentukan bayangan pada mata

KAMERA

Kamera merupakan alat optik yang dapat memindahkan/mengambil gambar dan menyimpannya dalam bentuk file, film maupun print-out. Kamera menggunakan lensa positif dalam membentuk bayangan. Sifat bayangan yang dibentuk kamera adalah nyata, terbalik, dan diperkecil.
 
Bagian-bagian dari kamera secara sederhana terdiri dari:
  1. Lensa cembung
  2. Film
  3. Diafragma
  4. Aperture
 



LUP

Lup  adalah alat optik yang memiliki fungsi untuk memperbesar bayangan benda. Lensa yang digunakan adalah lensa cembung. Bayangan yang dibentuk oleh lup memiliki sifat: maya, tegak, dan diperbesar.
 
Ada dua cara bagaimana menggunakan lup yaitu:
1.     1. Dengan cara mata berakomodasi maksimum
2.    2. Dengan cara mata tidak berakomodasi
Pada mata berakomodasi maksimum
·         Si = -PP = -Sn

Ø  Perbesaran sudut atau perbesaran angular

Pada mata tak berakomodasi
·         Si = -PR
·         So = f
Ø  Perbesaran sudut

M = perbesaran sudut
PP = titik dekat mata dalam meter
f = Jarak fokus lup dalam meter

TEROPONG

Teropong atau teleskop adalah sebuah alat yang digunakan untuk melihat benda-benda yang jauh sehingga tampak lebih jelas dan lebih dekat. Secara umum teropong terdiri atas dua buah lensa positif. Satu lensa mengarah ke obyek dan disebut lensa obyektif dan satu lensa mengarah ke mata dan disebut lensa okuler.
Prinsip utama pembentukan bayangan pada teropong adalah: lensa obyektif membentuk bayangan nyata dari sebuah obyek jauh dan lensa okuler berfungsi sebagai lup. Panjang teropong adalah jarak antara lensa obyektif dan lensa okulernya.
Ø  Teropong Bintang
Teropong bintang digunakan untuk mengamati obyek-obyek yang ada di langit (bintang). Teropong bintang terdiri dari sebuah lensa cembung yang berfungsi sebagai lensa obyektif dengan diameter dan jarak fokus besar, sedangkan okulernya adalah sebuah lensa cembung dengan jarak fokus pendek.
Ø  Teropong Bumi
Teropong bumi digunakan untuk mengamati obyek-obyek yang jauh dipermukaan bumi. Teropong ini akan menghasilkan bayangan yang nampak lebih jelas, lebih dekat dan tidak terbalik. Teropong bumi terdiri dari tiga lensa positif dan salah satunya berfungsi sebagai pembalik bayangan.
Ø  Teropong Panggung
Teropong panggung adalah teropong yang mengkombinasikan antara lensa positif dan lensa negatif. Lensa negatif digunakan sebagai pembalik dan sekaligus sebagai okuler. Sifat bayangan yang terbentuk adalah maya, tegak, dan diperkecil.

MIKROSKOP

Mikroskop adalah alat yang digunakan untuk mengamati benda-benda kecil. Mikroskop yang paling sederhana menggunakan kombinasi dua buah lensa positif, dengan panjang titik fokus obyektif lebih kecil daripada jarak titik fokus lensa okuler.
 
Pengamatan menggunakan mikroskop dengan mata berakomodasi maksimum.
 
Perbesaran mikroskop pada pengamatan ini adalah:

Keterangan:
S(Ob) = Jarak benda lensa obyektif dalam meter
S’(Ob) = Jarak bayangan lensa obyektif dalam meter
PP = titik dekat pengamat dalam meter
f(Ok) = panjang fokus lensa okuler dalam meter
 
Pengamatan menggunakan mikroskop dengan mata tidak berakomodasi.
 
Perbesaran mikroskop pada pengamatan ini adalah:

S(Ob) = Jarak benda lensa obyektif dalam meter
S’(Ob) = Jarak bayangan lensa obyektif dalam meter
PP = titik dekat pengamat dalam meter
f(Ok) = panjang fokus lensa okuler dalam meter

 
Panjang Mikroskop
Panjang mikroskop diukur dari jarak antara lensa obyektif dan lensa okuler. Untuk masing-masing jenis pengamatan, panjang mikroskop dapat dihitung dengan cara yang berbeda.
A.   Mata berakomodasi maksimum
d = Si(Ob) + So(Ok)
B.    Mata tak berakomodasi
d = Si(Ob) + f(Ok)
Keterangan:
d = panjang mikroskop dalam meter
Si(Ob) = jarak bayangan lensa obyektif dalam meter
So(Ok) = jarak benda lensa okulerdalam meter

f(Ok) = jarak fokus lensa okuler dalam meter
 

PENERAPAN ALAT OPTIK


Penerapan alat optik dalam kehidupan sehari-hari di antaranya kamera untuk memotret gambar, lup untuk melihat benda-benda agar terlihat lebih jelas/besar, mikroskop untuk mengamati sel atau jaringan yang tidak dapat teramati dengan mata telanjang.

Selasa, 30 April 2013

Contoh Soal Konsep Optik



SOAL – SOAL KONSEP OPTIK (cermin, dispersi, cahaya sebagai gelombang)
1. Sifat bayangan pada cermin datar selalu. . . .
a. maya, tegak, diperkecil
b. maya, tegak, sama besar
c. nyata, tegak, diperkecil
d. nyata, tegak, sama besar
jawaban : b
2. Sebuah benda terletak diantara dua cermin datar yang membentuk sudut 30o. Jumlah bayangan   benda tersebut adalah
a. 12 buah
b. 11 buah
c. 10 buah
d. 9 buah
jawaban : b,  
3. Cermin cekung dapat dimanfaatkan untuk . . . .
a. reflektor lampu mobil, motor, dan senter
      b. reflektor kaca cermin lemari
c. alat optik pada episkop
d. alat optik pada teleskop
jawaban : a
4. Bayangan yang dibentuk cermin cembung bersifat . . . .
a. maya, tegak, dan diperkecil
b. maya, tegak, dan diperbesar
c. nyata, tegak, dan diperkecil
d. nyata, tegak, dan diperbesar
jawaban : a
5. Sebuah benda berada didepan cermin cekung sejauh 10 cm. Bila jari-jari cermin 30 cm, maka sifat bayangannya adalah . . . .
a. nyata, diperkecil, dan terbalik
b. nyata, diperbesar, dan terbalik
c. maya, diperkecil, dan tegak
d. maya, diperbesar, dan tegak
jawaban : d
6. Sebuah benda berada 15 cm didepan cermin cembung. Bila titik fokus cermin 10 cm, maka jarak bayangannya . . . .
a. 6 cm didepan cermin
b. 6 cm dibelakang cermin
c. 30 cm didepan cermin
d. 30 cm dibelakang cermin
jawaban : c.
7. peristiwa penguraian cahaya polikromatik  menjadi cahaya - cahaya monokromatik disebut
a. polarisasi
b. dispersi
c. interferensi
d. difraksi
jawaban : d
8. Contoh aplikasi dispersi dalam kehidupan sehari-hari adalah . . . .
a. Terjadinya pelangi
b. Terjadinya fatamorgana
c. Warna langit yang tampak biru
d. warna air laut yang tampak biru
jawaban : a

Senin, 22 April 2013

JENIS ABERASI




Jenis-jenis Aberasi
1.      Aberasi Sferis
Adalah gejala kesalahan terbentuknya bayangan yang diakibatkan pengaruh kelengkungan lensa atau cermin. Aberasi semacam ini akan menghasilkan bayangan yang tidak memenuhi hukum-hukum pemantulan atau pembiasan.
Pembentukan bayangan pada lensa tipis sejauh ini adalah pembentukan bayangan oleh sinar-sinar paraksial atau sinar-sinar yang dekat dengan sumbu utama lensa sehingga bayangan yang terbentuk terkesan sangat jelas dan tajam. Pada kenyataannya, bayangan yang dibentuk oleh lensa tidak selalu tajam, bahkan bisa saja terlihat kabur (buram). Cacat bayangan seperti ini disebabkan oleh berkas sinar yang jauh dari sumbu utama tidak dibiaskan sebagaimana yang diharapkan. Berkas sinar sejajar yang jauh dari sumbu utama dibiaskan lensa tidak tepat di fokus utama, tetapi cenderung untuk mendekati pusat optik . Semakin jauh dari sumbu utama, berkas sinar sejajar ini akan semakin mendekati pusat optik lensa. Cacat inilah yang disebut aberasi sferis. Aberasi ini dapat dihilangkan dengan mempergunakan diafragma yang diletakkan di depan lensa atau dengan lensa gabungan aplanatis yang terdiri dari dua lensa yang jenis kacanya berlainan
Ada dua jenis aberasi Sferis :
a.       Aberasi Sferis Aksial
Aberasi sferis aksial menimbulkan ketidakpastian letak bayangan sepanjang arah sumbu optic.
b.      Aberasi Sferis lateral
Aberasi lateral menyebabkan kekaburan bayangan titik sumber sinar berupa bundaran kekaburan pada arah tegak lurus sumbu optic.
c.       Koma
Pada dasarnya, koma sama dengan aberasi sferik yakni sebagai akibat dari kegagalan lensa dalam membentuk gambar dari sinar pusat dan sinar-sinar yang melalui daerah yang lebih ke pinggir lensa pada satu titik. Hanya saja, pada koma sebuah titik benda akan terbentuk bayangan seperti bintang berekor, gejala koma ini tidak dapat diperbaiki dengan diafragma.
d.      Astigmatisme
Sementara  Astigmatisma itu sama dengan koma dalam hal bahwa koma itu terbentuk akibat penyebaran gambar dari suatu titik pada suatu bidang yang tegak lurus pada sumbu lensa sedangkan asigmatisma terbentuk sebagai penyebaran gambar dalam suatu arah sepanjang sumbu lensa. Dalam ketiga hal tersebut, gambarnya akan menjadi kabur. Adapun distorsi timbul akibat dari pembesaran yang berbeda dalam arah yang menjauhi sumbu lensa; sehingga suatu benda yang tadinya berbentuk garis lurus akan berubah bentuknya menjadi melengkung.
2.      Aberasi Kromatik
Adalah Pembiasan cahaya yang berbeda panjang gelombang pada titik fokus yang berbeda. Prinsip dasar terjadinya aberasi kromatis oleh karena fokus lensa berbeda-beda untuk tiap-tiap warna. Akibatnya bayangan yang terbentuk akan tampak berbagai jarak dari lensa. Aberasi kromatik timbul akibat perbedaan indeks bias lensa untuk panjang gelombang cahaya yang berbeda; cahaya yang terdiri dari berbagai panjang gelombang akan mengalami distorsi atau penguraian warna bila melalui lensa tersebut, dan fokus pun akan berbeda-beda menurut warna dan panjang gelombang tersebut sehingga terbentuklah gambar sesuai dengan masing-masing panjang gelombang itu.
Ada dua macam aberasi kromatik :
a.       Aberasi kromatik aksial/longitudinal
Perubahan jarak bayangan sesuai dengan indeks bias.
b.      Aberasi kromatik lateral
Perubahan aberasi dalam ukuran bayangan.  Untuk menghilangkan terjadinya aberasi kromatis dipakai lensa flinta dan kaca krown; lensa kembar ini disebut “ Achromatic double lens”.
3.      Aberasi Monokromatik
Aberasi monokromatik  sering juga disebut aberasi tingkat ketiga adalah aberasi yang terjadi walaupun sistem optik mempunyai lensa dengan bidang speris yang telah sempurna dan tidak terjadi dispersi cahaya.
Muka gelombang sinar yang datar, setelah melewati kanta akan berinterferensi dengan muka gelombang sinar di sekitarnya dan menjadi muka gelombang aberasi yang berbentuk speris.
Abersi monokromarik terbagi menjadi dua :
a.       Aberasi defocus
adalah aberasi yang disebabkan karena titik api (en:focal point, foci) tidak terletak pada titik fokus paraksial sperisnya, disebut juga titik santir Gauss (en:Gaussian image point). Defokus, disebut juga wavefront aberration, dimodelkan dengan kesalahan longitudinal gelombang cahaya yang terjadi karena pergeseran titik api ideal pada bidang fokal menuju titik api pengamatan pada sumbu optis, berikut beserta sperisnya (en:radius of curvature) masing-masing yang bersinggungan pada pusat optis kanta. Sinar yang tidak terfokus pada titik api ideal akan merambat menuju bidang fokal secara transversal dan membentuk lingkaran gamang yang kita kenal dengan istilah blur.
Aberasi defokus dapat dikurangi dengan membuat sinar insiden terkolimasi (en:collimated light) dan jarak hiperfokal. Cahaya kurang terkolimasi pada nilai bukaan kecil memperbesar interferensi longitudinal gelombang cahaya yang membias menuju ke titik api, interferensi tersebut akan menimbulkan gelombang cahaya resultan yang dapat jatuh di luar titik api.
b.      Aberasi kurva medan
adalah sebuah aberasi pada sistem optik yang mempunyai bidang fokal menyerupai lingkaran/kurva. Bayangan yang dibentuk oleh lensa pada layer letaknya tidak dalam satu bidang datar melainkan pada bidang lengkung. Peristiwa ini disebut lengkungan medan atau lengkungan bidang bayangan.